skip to main content


Search for: All records

Creators/Authors contains: "Modak, Shaunak"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    A major puzzle concerning the wide stellar binaries (semimajor axes a ≳ 103 au) in the Solar neighbourhood is the origin of their observed superthermal eccentricity distribution function (DF), which is well approximated by P(e) ∝ eα with α ≈ 1.3. This DF evolves under the combined influence of (i) tidal torques from the Galactic disc and (ii) scattering by passing stars, molecular clouds, and substructure. Recently, it was demonstrated that Galactic tides alone cannot produce a superthermal eccentricity DF from an initially isotropic, non-superthermal one, under the restrictive assumptions that the eccentricity DF was initially of power-law form and then was rapidly phase-mixed toward a steady state by the tidal perturbation. In this paper, we first prove analytically that this conclusion is valid at all times, regardless of these assumptions. We then adopt a thin Galactic disc model and numerically integrate the equations of motion for several ensembles of tidally perturbed wide binaries to study the time evolution in detail. We find that even non-power-law DFs can be described by an effective power-law index αeff which accurately characterizes both their initial and final states, and that a DF with initial (effective or exact) power-law index αi is transformed by Galactic tides into another power law with index αf ≈ (1 + αi)/2 on a time-scale $\sim 4\, \mathrm{Gyr}\, (a/10^4\mathrm{AU})^{-3/2}$. In a companion paper, we investigate separately the effect of stellar scattering. As the GAIA data continues to improve, these results will place strong constraints on wide binary formation channels.

     
    more » « less
  2. ABSTRACT

    We study the properties of cosmic-ray (CR) driven galactic winds from the warm interstellar medium using idealized spherically symmetric time-dependent simulations. The key ingredients in the model are radiative cooling and CR-streaming-mediated heating of the gas. Cooling and CR heating balance near the base of the wind, but this equilibrium is thermally unstable, leading to a multiphase wind with large fluctuations in density and temperature. In most of our simulations, the heating eventually overwhelms cooling, leading to a rapid increase in temperature and a thermally driven wind; the exception to this is in galaxies with the shallowest potentials, which produce nearly isothermal $T \approx 10^4\,$ K winds driven by CR pressure. Many of the time-averaged wind solutions found here have a remarkable critical point structure, with two critical points. Scaled to real galaxies, we find mass outflow rates $\dot{M}$ somewhat larger than the observed star-formation rate in low-mass galaxies, and an approximately ‘energy-like’ scaling $\dot{M} \propto v_{\rm esc}^{-2}$. The winds accelerate slowly and reach asymptotic wind speeds of only ∼0.4vesc. The total wind power is $\sim 1~{{\ \rm per\ cent}}$ of the power from supernovae, suggesting inefficient preventive CR feedback for the physical conditions modelled here. We predict significant spatially extended emission and absorption lines from 104–105.5 K gas; this may correspond to extraplanar diffuse ionized gas seen in star-forming galaxies.

     
    more » « less
  3. Abstract

    Globular clusters (GCs) provide valuable insight into the properties of their host galaxies’ dark matter halos. UsingN-body simulations incorporating semianalytic dynamical friction and GC−GC merger prescriptions, we study the evolution of GC radial distributions and mass functions in cuspy and cored dark matter halos. Modeling the dynamics of the GC-rich system in the dwarf galaxy UGC 7369, we find that friction-induced inspiral and subsequent mergers of massive GCs can naturally and robustly explain the mass segregation of the GCs and the existence of a nuclear star cluster (NSC). However, the multiple mergers required to form the NSC only take place when the dark matter halo is cuspy. In a cored halo, stalling of the dynamical friction within the core halts the inspiral of the GCs, and so the GC merger rate falls significantly, precluding the formation of an NSC. We therefore argue that the presence of an NSC requires a cusp in UGC 7369. More generally, we propose that the presence of an NSC and the corresponding alteration of the GC mass function due to mergers may be used as an indicator of a cuspy halo for galaxies in which we expect NSC formation to be merger dominated. These observables represent a simple, powerful complement to other inner halo density profile constraint techniques and should allow for straightforward extension to larger samples.

     
    more » « less
  4. ABSTRACT

    We present multi-epoch spectropolarimetry of Type IIn supernova SN2017hcc, 16–391 d after explosion. Continuum polarization up to 6 per cent is observed during the first epoch, making SN 2017hcc the most intrinsically polarized SN ever reported at visible wavelengths. During the first 29 d, when the polarization is strongest, the continuum polarization exhibits wavelength dependence that rises toward the blue, then becomes wavelength independent by day 45. The polarization drops rapidly during the first month, even as the flux is still climbing to peak brightness. None the less, unusually high polarization is maintained until day 68, at which point the polarization declines to levels comparable to those of previous well-studied SNe IIn. Only minor changes in position angle (PA) are measured throughout the evolution. The blue slope of the polarized continuum and polarized line emission during the first month suggests that an aspherical distribution of dust grains in pre-shock circumstellar material (CSM) is echoing the SN IIn spectrum and strongly influencing the polarization, while the subsequent decline during the wavelength-independent phase appears consistent with electron scattering near the SN/CSM interface. The persistence of the PA between these two phases suggests that the pre-existing CSM responsible for the dust scattering at early times is part of the same geometric structure as the electron-scattering region that dominates the polarization at later times. SN 2017hcc appears to be yet another, but more extreme, case of aspherical yet well-ordered CSM in Type IIn SNe, possibly resulting from pre-SN mass-loss shaped by a binary progenitor system.

     
    more » « less
  5. ABSTRACT

    We present BVRI and unfiltered (Clear) light curves of 70 stripped-envelope supernovae (SESNe), observed between 2003 and 2020, from the Lick Observatory Supernova Search follow-up program. Our SESN sample consists of 19 spectroscopically normal SNe Ib, 2 peculiar SNe Ib, six SNe Ibn, 14 normal SNe Ic, 1 peculiar SN Ic, 10 SNe Ic-BL, 15 SNe IIb, 1 ambiguous SN IIb/Ib/c, and 2 superluminous SNe. Our follow-up photometry has (on a per-SN basis) a mean coverage of 81 photometric points (median of 58 points) and a mean cadence of 3.6 d (median of 1.2 d). From our full sample, a subset of 38 SNe have pre-maximum coverage in at least one passband, allowing for the peak brightness of each SN in this subset to be quantitatively determined. We describe our data collection and processing techniques, with emphasis toward our automated photometry pipeline, from which we derive publicly available data products to enable and encourage further study by the community. Using these data products, we derive host-galaxy extinction values through the empirical colour evolution relationship and, for the first time, produce accurate rise-time measurements for a large sample of SESNe in both optical and infrared passbands. By modelling multiband light curves, we find that SNe Ic tend to have lower ejecta masses and lower ejecta velocities than SNe Ib and IIb, but higher 56Ni masses.

     
    more » « less
  6. Abstract We present optical follow-up imaging obtained with the Katzman Automatic Imaging Telescope, Las Cumbres Observatory Global Telescope Network, Nickel Telescope, Swope Telescope, and Thacher Telescope of the LIGO/Virgo gravitational wave (GW) signal from the neutron star–black hole (NSBH) merger GW190814. We searched the GW190814 localization region (19 deg 2 for the 90th percentile best localization), covering a total of 51 deg 2 and 94.6% of the two-dimensional localization region. Analyzing the properties of 189 transients that we consider as candidate counterparts to the NSBH merger, including their localizations, discovery times from merger, optical spectra, likely host galaxy redshifts, and photometric evolution, we conclude that none of these objects are likely to be associated with GW190814. Based on this finding, we consider the likely optical properties of an electromagnetic counterpart to GW190814, including possible kilonovae and short gamma-ray burst afterglows. Using the joint limits from our follow-up imaging, we conclude that a counterpart with an r -band decline rate of 0.68 mag day −1 , similar to the kilonova AT 2017gfo, could peak at an absolute magnitude of at most −17.8 mag (50% confidence). Our data are not constraining for “red” kilonovae and rule out “blue” kilonovae with M > 0.5 M ⊙ (30% confidence). We strongly rule out all known types of short gamma-ray burst afterglows with viewing angles <17° assuming an initial jet opening angle of ∼5.°2 and explosion energies and circumburst densities similar to afterglows explored in the literature. Finally, we explore the possibility that GW190814 merged in the disk of an active galactic nucleus, of which we find four in the localization region, but we do not find any candidate counterparts among these sources. 
    more » « less
  7. null (Ed.)